National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Dynamic analysis of structure loaded seismic loads
Janošková, Lenka ; Nevařil, Aleš (referee) ; Vlk, Zbyněk (advisor)
In this diploma thesis the seismic load on two different models is solved – the first model is a beam hall and the second model is a multistory building. The calculation of seismic load was performed according to standard ČSN EN 1998-1 (Eurocode 8) using the response spectrum analysis and the method of equivalent static forces (substi-tute load). For the combination of seismic responses in different directions are used SRSS and CQC rules. Models and calculations were solved in a student’s version of program RFEM 4.10 (Ing. Software Dlubal, s.r.o.). The comparison of mentioned methods in each models, also the comparison of combinative rules in calculation and the final evaluation of seismic responses on both of models are the subject of this thesis.
Vibration of slender bridge structure
Kika, Ondřej ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Krejsa,, Martin (referee) ; Salajka, Vlastislav (advisor)
Doctoral thesis called Vibrations of slender bridge structures deals with comparison of constructions’ responses at different load model of pedestrians. Specifically, in practice commonly used model, where there are the effects of pedestrians replaced by forces acting in a certain place on the bridge and other model, which takes into account the load of pedestrians moving along the deck. Calculations of responses are performed by finite element method in program ANSYS. To obtain extreme values of responses It is used parametric calculation using the program OptiSlang. At first responses on the simplified constructions are evaluated for load of two pedestrians, as well as the responses on real bridges for load of two pedestrians and four pairs of pedestrians. Responses are also evaluated in terms of pedestrian’s comfort during use structures and analyzed for what groups of pedestrians are criteria still met and for which it is necessary to consider about use of devices to reduce vibration. Possible applications and design process of the vibration dampers are shown on different configurations on the bridges.
Vibration of slender bridge structure
Kika, Ondřej ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Krejsa,, Martin (referee) ; Salajka, Vlastislav (advisor)
Doctoral thesis called Vibrations of slender bridge structures deals with comparison of constructions’ responses at different load model of pedestrians. Specifically, in practice commonly used model, where there are the effects of pedestrians replaced by forces acting in a certain place on the bridge and other model, which takes into account the load of pedestrians moving along the deck. Calculations of responses are performed by finite element method in program ANSYS. To obtain extreme values of responses It is used parametric calculation using the program OptiSlang. At first responses on the simplified constructions are evaluated for load of two pedestrians, as well as the responses on real bridges for load of two pedestrians and four pairs of pedestrians. Responses are also evaluated in terms of pedestrian’s comfort during use structures and analyzed for what groups of pedestrians are criteria still met and for which it is necessary to consider about use of devices to reduce vibration. Possible applications and design process of the vibration dampers are shown on different configurations on the bridges.
Dynamic analysis of structure loaded seismic loads
Janošková, Lenka ; Nevařil, Aleš (referee) ; Vlk, Zbyněk (advisor)
In this diploma thesis the seismic load on two different models is solved – the first model is a beam hall and the second model is a multistory building. The calculation of seismic load was performed according to standard ČSN EN 1998-1 (Eurocode 8) using the response spectrum analysis and the method of equivalent static forces (substi-tute load). For the combination of seismic responses in different directions are used SRSS and CQC rules. Models and calculations were solved in a student’s version of program RFEM 4.10 (Ing. Software Dlubal, s.r.o.). The comparison of mentioned methods in each models, also the comparison of combinative rules in calculation and the final evaluation of seismic responses on both of models are the subject of this thesis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.